37 research outputs found

    UNRAVELING THE COMPLEX GENETICS OF NEUROLOGICAL DISORDERS

    Get PDF

    Assessing the performance of European-derived cardiometabolic polygenic risk scores in South-Asians and their interplay with family history

    Get PDF
    Background & aims We aimed to assess the performance of European-derived polygenic risk scores (PRSs) for common metabolic diseases such as coronary artery disease (CAD), obesity, and type 2 diabetes (T2D) in the South Asian (SAS) individuals in the UK Biobank. Additionally, we studied the interaction between PRS and family history (FH) in the same population. Methods To calculate the PRS, we used a previously published model derived from the EUR population and applied it to the individuals of SAS ancestry from the UKB study. Each PRS was adjusted according to an individual’s genotype location in the principal components (PC) space to derive an ancestry adjusted PRS (aPRS). We calculated the percentiles based on aPRS and stratified individuals into three aPRS categories: low, intermediate, and high. Considering the intermediate-aPRS percentile as a reference, we compared the low and high aPRS categories and generated the odds ratio (OR) estimates. Further, we measured the combined role of aPRS and first-degree family history (FH) in the SAS population. Results The risk of developing severe obesity for SAS individuals was almost twofold higher for individuals with high aPRS than for those with intermediate aPRS, with an OR of 1.95 (95% CI = 1.71–2.23, P < 0.01). At the same time, the risk of severe obesity was lower in the low-aPRS group (OR = 0.60, CI = 0.53–0.67, P < 0.01). Results in the same direction were found in the EUR data, where the low-PRS group had an OR of 0.53 (95% CI = 0.51–0.56, P < 0.01) and the high-PRS group had an OR of 2.06 (95% CI = 2.00-2.12, P < 0.01). We observed similar results for CAD and T2D. Further, we show that SAS individuals with a familial history of CAD and T2D with high-aPRS are associated with a higher risk of these diseases, implying a greater genetic predisposition. Conclusion Our findings suggest that CAD, obesity, and T2D GWAS summary statistics generated predominantly from the EUR population can be potentially used to derive aPRS in SAS individuals for risk stratification. With future GWAS recruiting more SAS participants and tailoring the PRSs towards SAS ancestry, the predictive power of PRS is likely to improve further

    Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson's study.

    Get PDF
    peer reviewedHeterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.R-AGR-0592 - FNR - NCER-PD Phase II Coordination (01/06/2015 - 30/11/2023) - KRÜGER Rejko3. Good health and well-bein

    Trans-ancestry polygenic models for the prediction of LDL blood levels: an analysis of the United Kingdom Biobank and Taiwan Biobank

    Get PDF
    peer reviewedPolygenic risk score (PRS) predictions often show bias toward the population of available genome-wide association studies (GWASs), which is typically of European ancestry. This study aimed to assess the performance differences of ancestry-specific PRS and test the implementation of multi-ancestry PRS to enhance the generalizability of low-density lipoprotein (LDL) cholesterol predictions in the East Asian (EAS) population. In this study, we computed ancestry-specific and multi-ancestry PRSs for LDL using data obtained from the Global Lipid Genetics Consortium, while accounting for population-specific linkage disequilibrium patterns using the PRS-CSx method in the United Kingdom Biobank dataset (UKB, n = 423,596) and Taiwan Biobank dataset (TWB, n = 68,978). Population-specific PRSs were able to predict LDL levels better within the target population, whereas multi-ancestry PRSs were more generalizable. In the TWB dataset, covariate-adjusted R2 values were 9.3% for ancestry-specific PRS, 6.7% for multi-ancestry PRS, and 4.5% for European-specific PRS. Similar trends (8.6%, 7.8%, and 6.2%) were observed in the smaller EAS population of the UKB (n = 1,480). Consistent with R2 values, PRS stratification in EAS regions (TWB) effectively captured a heterogenous variability in LDL blood cholesterol levels across PRS strata. The mean difference in LDL levels between the lowest and highest EAS-specific PRS (EAS_PRS) deciles was 0.82, compared to 0.59 for European-specific PRS (EUR_PRS) and 0.76 for multi-ancestry PRS. Notably, the mean LDL values in the top decile of multi-ancestry PRS were comparable to those of EAS_PRS (3.543 vs. 3.541, p = 0.86). Our analysis of the PRS prediction model for LDL cholesterol further supports the issue of PRS generalizability across populations. Our targeted analysis of the EAS population revealed that integrating non-European genotyping data with a powerful European-based GWAS can enhance the generalizability of LDL PRS.3. Good health and well-bein

    Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors

    Get PDF
    peer reviewedObjective: The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available. Methods: We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership–Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses. Results: A higher polygenic resilience score was associated with a lower risk for PD (β = −0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci. Interpretation: The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 202

    A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease

    Get PDF
    Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD

    Rare variant analysis of the PPMI dataset to uncover the complex genetic architecture of Parkinson’s disease

    No full text
    Objective: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). Background: Parkinson’s disease (PD) is a complex disease. Besides variants in high-risk genes such as LRRK2 and PARK2, multiple genes associated to sporadic PD were discovered via genome-wide association studies. Yet, there is a large number of genetic factors that need to be deciphered. Methods: To unravel the genetic factors that play a role in PD we used the whole exome sequencing data available as a part of Parkinson Progression Markers Initiative (PPMI). The dataset comprised of 435 PD cases and 162 ethnically matched controls, respectively. We performed burden tests at single variant, gene and geneset levels on common and rare exonic and splice-variants. We also looked for severity of rare highly deleterious variants (CADD phred score>30) using the CADD score as well as singleton (variants seen in only one individual across cases and controls) rare variants. Additionally, we performed the functional enrichment analysis with the genes harboring rare highly deleterious variants (case uniq genes) that are only present in cases. Results: We observed an increased mutational burden of singleton variants in PD cases compared to the controls in nonsynonymous+LOF variants (empirical P-value 0.005) but not in the synonymous variants (empirical P-value 0.09). We observed a higher significant burden (P-value 0.028) as well as higher significant severity (empirical P-value 0.027) of rare, highly deleterious nonsynonymous variants, but not in the synonymous variants of the candidate genes (P-value 0.686, empirical P-value 0.556 for burden and severity respectively). The network analysis of genes having deleterious variants only present in cases (Case uniq) showed a significant increase in connectivity compared to random networks (P-value 0.0002). Pathway analysis of those genes showed a significant enrichment of pathways and biological process implicated in the nervous system functioning and the etiology of PD. Conclusions: Our study supports the complex disease notion of PD by highlighting the convoluted architecture of PD where case uniq genes including LRRK2 are implicated in several biological processes and pathways related to PD. The main finding of this study is to discover the complex genetics of PD at an exome wide level

    Excess of singleton loss-of-function variants in Parkinson's disease contributes to genetic risk.

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative disorder with complex genetic architecture. Besides rare mutations in high-risk genes related to monogenic familial forms of PD, multiple variants associated with sporadic PD were discovered via association studies. Methods We studied the whole-exome sequencing data of 340 PD cases and 146 ethnically matched controls from the Parkinson’s Progression Markers Initiative (PPMI) and performed burden analysis for different rare variant classes. Disease prediction models were built based on clinical, non-clinical and genetic features, including both common and rare variants, and two machine learning methods. Results We observed a significant exome-wide burden of singleton loss-of-function variants (corrected p=0.037). Overall, no exome-wide burden of rare amino acid changing variants was detected. Finally, we built a disease prediction model combining singleton loss-of-function variants, a polygenic risk score based on common variants, and family history of PD as features and reached an area under the curve of 0.703 (95% CI 0.698 to 0.708). By incorporating a rare variant feature, our model increased the performance of the state-of-the-art classification model for the PPMI dataset, which reached an area under the curve of 0.639 based on common variants alone. Conclusion The main finding of this study is to highlight the contribution of singleton loss-of-function variants to the complex genetics of PD and that disease risk prediction models combining singleton and common variants can improve models built solely on common variants

    Assessing the role of polygenic background on the penetrance of monogenic forms in Parkinson\textquoterights disease. 2021.06.06.21253270

    No full text
    Background: Several rare and common variants are associated with Parkinson's disease. However, there is still an incomplete penetrance in the carriers of rare variants associated with Parkinson's disease. To address this issue, we investigated whether a PRS calculated from significant GWAS SNPs affects the penetrance of Parkinson's disease among carriers of rare monogenic variants in known Parkinson's disease genes and those with a family history. Methods: We calculated the PRS based on common variants and selected the carriers of rare monogenic variants by using the exome data from UK Biobank. Individuals were divided into three risk categories based on PRS: low (90%) risk groups. We then compared how PRS affects Parkinson\textquoterights disease risk among carriers of rare monogenic variants and those with family-history. Results: We observed a two-fold higher odds ratio for a carrier of a monogenic variant that had a high PRS (OR 4.07,95\% CI, 1.72-8.08) compared to carriers with a low PRS (OR 1.91, 95\% CI, 0.31-6.05). In the same line, carriers with a first-degree family history and with \>90\% PRS have even a higher risk of developing PD (OR 23.53, 95\%CI 5.39-71.54) compared to those with \<90\% PRS (OR 9.54, 95\% CI 3.32-21.65). Conclusions: Our results show that PRS, carrier status, and family history contribute independently and additively to the Parkinson's disease risk
    corecore